NEXT STORY
The progress of evolution
RELATED STORIES
NEXT STORY
The progress of evolution
RELATED STORIES
Views | Duration | ||
---|---|---|---|
61. Extending Darwinian theory to molecules | 158 | 01:31 | |
62. The difference between my theory and classical genetic theory | 227 | 02:31 | |
63. The fitness landscape | 231 | 02:18 | |
64. The complexity of a sequence of nucleotides | 122 | 03:37 | |
65. Population and mutation | 118 | 01:22 | |
66. The progress of evolution | 122 | 02:47 | |
67. Finding a ridge in sequence space | 108 | 01:25 | |
68. Low and high dimensional landscapes | 116 | 02:47 | |
69. Peter Schuster's concept of sequence space and shape space | 133 | 04:34 | |
70. The space of mutants | 109 | 01:27 |
How could evolution have been so successful? I mean people always thought life is such a complicated phenomenon. Even the final stages of evolution, men... such complicated... how could it come about in the relatively short time of the existence of our planet? And then I can give you four results of the theory which say it's a little bit different from what you generally imagine. The first thing is you are working with populations, in which many mutants are present. If you always would have the wild type and if mutation would be a little perturbation, well, you couldn't escape. You will see that later in virus infections. The virus is under the steady evolutionary pressure of the host system. The host develops an immune defence against the virus, so the virus must somehow escape it. It can only do it if it has sufficient mutations around. So, population means that you populate many mutational states.
Nobel Prize winning German biophysical chemist, Manfred Eigen (1927-2019), was best known for his work on fast chemical reactions and his development of ways to accurately measure these reactions down to the nearest billionth of a second. He published over 100 papers with topics ranging from hydrogen bridges of nucleic acids to the storage of information in the central nervous system.
Title: Population and mutation
Listeners: Ruthild Winkler-Oswatitch
Ruthild Winkler-Oswatitsch is the eldest daughter of the Austrian physicist Klaus Osatitsch, an internationally renowned expert in gas dynamics, and his wife Hedwig Oswatitsch-Klabinus. She was born in the German university town of Göttingen where her father worked at the Kaiser Wilhelm Institute of Aerodynamics under Ludwig Prandtl. After World War II she was educated in Stockholm, Sweden, where her father was then a research scientist and lecturer at the Royal Institute of Technology.
In 1961 Ruthild Winkler-Oswatitsch enrolled in Chemistry at the Technical University of Vienna where she received her PhD in 1969 with a dissertation on "Fast complex reactions of alkali ions with biological membrane carriers". The experimental work for her thesis was carried out at the Max Planck Institute for Physical Chemistry in Göttingen under Manfred Eigen.
From 1971 to the present Ruthild Winkler-Oswatitsch has been working as a research scientist at the Max Planck Institute in Göttingen in the Department of Chemical Kinetics which is headed by Manfred Eigen. Her interest was first focused on an application of relaxation techniques to the study of fast biological reactions. Thereafter, she engaged in theoretical studies on molecular evolution and developed game models for representing the underlying chemical proceses. Together with Manfred Eigen she wrote the widely noted book, "Laws of the Game" (Alfred A. Knopf Inc. 1981 and Princeton University Press, 1993). Her more recent studies were concerned with comparative sequence analysis of nucleic acids in order to find out the age of the genetic code and the time course of the early evolution of life. For the last decade she has been successfully establishing industrial applications in the field of evolutionary biotechnology.
Tags: evolution, mutation, wild type, virus infections
Duration: 1 minute, 23 seconds
Date story recorded: July 1997
Date story went live: 24 January 2008