a story lives forever
Sign in
Form submission failed!

Stay signed in

Recover your password?
Form submission failed!

Web of Stories Ltd would like to keep you informed about our products and services.

Please tick here if you would like us to keep you informed about our products and services.

I have read and accepted the Terms & Conditions.

Please note: Your email and any private information provided at registration will not be passed on to other individuals or organisations without your specific approval.

Video URL

You must be registered to use this feature. Sign in or register.


One class, three Nobels


First passions and experiments
Renato Dulbecco Scientist
Comments (0) Please sign in or register to add comments

And then there was a lovely thing for me, because there was a piano and I could play the piano. This question of the piano came out when I was a young boy in Imperia, because my mother, I don't know how she was able to listen to opera, I don't know how she would have heard it, but she was fascinated by the opera. And so, when I was a young boy, she suggested that I should learn to play the piano so that in the end I would be able to play operas for her, you see. And this is in fact what happened. I took lessons for a few years and then at the end of this I was able to play operas. In fact, this opera period makes me think of something else that was rather interesting. When I was at secondary school, probably in the first or second year, I discovered that there was a radio... because at that time the radio was somewhat primitive, so they were broadcasting music and I thought, if only I had a radio I would play the music to my mother. And then the interesting thing is that I wanted to know how a radio worked and then I bought a book, where it explained everything very clearly, and I started to build a radio, those crystal set radios...

[Q] Crystal set, yes. I think that all young boys, not only at the start of the 1930s, but also afterwards, because...

And thus I started with this and this worked and we were able to hear something, etc. but then I said no, I had to go further and then following the instructions of these books that I had, then I set to work with tubes.

[Q] With tubes?

With three, as they were called, with three or four electrodes, making more complicated circuits, and so I managed to build a really good radio that played really well, which picked up stations from all over the world, to my mother's great satisfaction as she could listen to operas. I mentioned the point about the radio because another interesting thing that there was in Imperia... In Imperia, in Porto Maurizio, in fact, there was a... what do you call it, a meteorological and earthquake station.

[Q] Was it a type of observatory?

Yes, an observatory, exactly. A very primitive thing, because there was a barometer that showed atmospheric pressure and there was one of these seismographs that were used at that time, that was a long pendulum, there was a very long scale... this pendulum with a metal wire attached at the top and then a large lead mass, to which pens that wrote were attached.

[Q] Did you see the drawing?

No, the earthquake made the drawing. If there was an earthquake, the mass stayed still for a moment, the rest moved and traced the earthquake. All that happened there was that the barometric pressure was recorded every day and then if there were drawings... and all this was sent to Rome every day, to the centre and in fact it was the pharmacist who analysed all this.

[Q] And why the pharmacist?

Probably the pharmacist because he was the only one with vague knowledge of these things. And my dad knew the pharmacist, and when the pharmacist found out that I was interested in physics and mathematics, he said, 'Send him here to me so he can see what we are doing'. And there I went. The great thing was that he had a little room where he built things and there were cupboards full of spare parts for putting them together and he said to me... he said, 'Do what you like'. So I also started building and it was great to be building again... so it was from here that the seismograph came about, you see. The seismograph was an electronic seismograph, which was much more sensitive than the mechanical one, however it had the disadvantage that, at this time, these electronic tubes were not entirely perfect, all the structures, which I gradually attempted to change, to digress, so if it was working it recorded, but if it was out, there was nothing more to do. I continued to develop this technology until medical school because, when I was at medical school in Turin, at a particular point I became an intern in a hospital, the hospital of the Order of St. Maurice, and there I got to know a particular doctor very well. He was one of the doctors I spoke to a lot, interacted with, he was a cardiologist and so I saw the recordings that he took with the electrocardiogram. So I thought, we can use this method that I was using for the seismograph, to measure the changes in heart volume, because at the basis of this seismograph was a variation of capacity... you know, two plates of metal which come together and which move around, this is the variation of capacity. I was changing the frequency of resonance, and so I was just thinking, that with the heart... of course I cannot place a plate on the heart, but I could place a plate in front of here and think of the heart as the other plate and understand the variations of the heart, of the volume of the heart making the system capacity vary. And in fact, it worked pretty well and so we published it.

[Q] Oh, really? Where, do you remember?

In a paper. This was my second publication, because the first was that of the seismograph, which was published in a geology paper, as it was the only one, there had never been an electronic seismograph before, so it was a totally avant-garde attempt, you see. Although in the end, we did not achieve great results from it and in addition, the invention for measuring the changes in heart volumes didn't advance much either because there was too much variability, I would have had to work on it for a long time, but I had other things on my mind.

E poi c'era una bella cosa per me, perché c'era un piano e io potevo suonare il piano. Questa questione del piano è venuta fuori quando ero ragazzino a Imperia, perché mia madre, non so insomma si vede che aveva avuto modo di sentire delle opere, non so in che modo le avesse sentite, perciò era affascinata dall'opera. E allora, quando io ero ragazzino, lei mi ha suggerito che dovessi suonare il piano in maniera tale che alla fine potessi suonare le opere per lei, capisci? E difatti questo è successo. Ho preso lezioni per parecchi anni e poi alla fine potevo suonare le opere. E anzi questo periodo delle opere mi fa pensare a un'altra cosa che è anche stata piuttosto interessante. Quando ero al liceo, probabilmente al primo anno, secondo anno del liceo, sono venuto a conoscenza del fatto che c'era una radio... perché allora la radio era proprio primitiva insomma, perciò trasmettevano musica e allora ho pensato, magari se avessi una radio potrei suonare la musica a mia madre. E poi la cosa interessante è che volevo sapere com'è che funziona una radio e allora mi sono comprato un libro, dove tutto era spiegato molto chiaramente, e ho cominciato col costruire una radio, quelle radio a galena...

[Q] Galena, sì. Io credo comunque che tutti i ragazzini, non soltanto agli inizi degli anni '30, ma anche dopo, perché...

E così ho cominciato con quella e quella ha funzionato e abbiamo potuto sentire qualche cosa, ecc. ma poi ho detto no, io devo andare avanti e allora seguendo le istruzioni di questi libri che avevo, allora mi sono messo a lavorare coi tubi...

[Q] Coi tubi?

A tre, come si chiamavano, a tre o quattro elettrodi, facendo circuiti molto più complicati, insomma per cui sono riuscito a costruire veramente una buona radio che suonava molto bene, che prendeva stazioni da tutto il mondo, con grande soddisfazione di mia madre perché poteva sentirsi le opere. Questa questione della radio poi l'ho ancora sviluppata ulteriormente perché, una cosa anche interessante che era lì a Imperia. A Imperia, a Porto Maurizio, anzi, c'era una stazione, come si chiama, meteorologica e di terremoti

[Q] Era una sorta di osservatorio?

Un osservatorio, appunto. Una cosa molto primitiva, perché c'era il barometro insomma che marcava la pressione atmosferica e c'era uno di questi sismografi che si usavano allora, che era un lunghissimo pendolo, c'era una scala molto lunga... questo pendolo con un filo di metallo attaccato in cima e poi una grossa massa di piombo, per cui poi lì erano attaccate delle penne che scrivevano.

[Q] Tu vedevi il tracciato?

No, il tracciato lo faceva il terremoto. Se c'era il terremoto, la massa rimaneva ferma per un momento, il resto si muoveva e tracciava il terremoto. Tutto quello che si faceva lì, era registrare ogni giorno la pressione barometrica e poi se c'erano dei tracciati... e tutto questo veniva mandato giornalmente a Roma, al centro e quello che analizzava tutto questo era infatti il farmacista.

[Q] E perché il farmacista?

Il farmacista perché era l'unico che evidentemente aveva un po' di conoscenze vaghe in questa cosa. E mio padre conosceva il farmacista, per cui il farmacista dice, quando ha conosciuto di me che sapeva che ero interessato in fisica e matematica, dice... Mandalo lì da me così può vedere quello che facciamo. E sono andato lì. E quello che, la cosa bella che c'era è che aveva uno stanzetto dove lui costruiva, sai, le cose e c'erano tutti armadi pieni di pezzi di ricambio per metterli insieme e mi ha detto, dice... Fai quello che vuoi. Allora mi sono messo anch'io a costruire ed è stato bellissimo di nuovo costruendo... insomma è da lì che è venuto fuori poi il sismografo, capito? Il sismografo era un sismografo elettronico, che era molto più sensibile di quello meccanico, però aveva lo svantaggio che, a quell'epoca, questi tubi elettronici non erano molto perfetti, tutte le strutture, per cui tentava progressivamente a variare, a uscire fuori dal campo, per cui se era in funzione, registrava, ma se era fuori, non c'era più nulla da fare. Questo sviluppo di questa tecnologia l'ho portata avanti fino a scuola di medicina perché, quand'ero alla scuola di medicina a Torino, a un certo punto sono diventato interno in un ospedale, l'ospedale mauriziano, e lì avevo un'interazione molto buona con un dottore ecc. E uno dei dottori con cui parlavo molto, interagivo, era un cardiologo e così vedevo le registrazioni che faceva lui con l'elettrocardiogramma. Allora ho pensato, magari possiamo usare questo metodo che io usavo per il sismografo, per misurare le variazioni di volume del cuore, perché alla base di quel sismografo, era una variazione di capacità... sai due piastre di metallo che si avvicinano e che si spostano, questa è la variazione di capacità; per cui cambiavo la frequenza della risonanza. E allora pensavo appunto, lì col cuore... naturalmente non posso mettere una piastra sul cuore, però potrei mettere una piastra davanti qui e pensare che il cuore fosse l'altra piastra e capire le variazioni del cuore, del volume del cuore facendo variare la capacità del sistema. E difatti funzionava abbastanza bene e l'abbiamo persino pubblicato.

[Q] Ah, sì? Dove, lo ricordi?

Su un giornale medico. Questa è la mia seconda pubblicazione, perché la prima era quella del sismografo, che è stata pubblicata su un giornale di geologia, perché era l'unico, non c'era mai stato un sismografo elettronico, perciò era un tentativo veramente d'avanguardia, capisci? Sebbene non abbia veramente portato alla fine gran risultati e questo appunto anche, quello per misurare le variazioni dei volumi del cuore, non è andato avanti molto perché appunto c'era troppa variabilità, avrei dovuto mettermi a lavorare lì per molto tempo, ma avevo altre cose in testa.

The Italian biologist Renato Dulbecco (1914-2012) had early success isolating a mutant of the polio virus which was used to create a life-saving vaccine. Later in his career, he initiated the Human Genome Project and was jointly awarded the Nobel Prize in Physiology or Medicine in 1975 for furthering our understanding of cancer caused by viruses.

Listeners: Paola De Paoli Marchetti

Paola De Paoli Marchetti is a science journalist who graduated with an honours degree in foreign languages and literature from the University Ca’Foscari, Venice. She has been a science journalist since the 1960s and has been on the staff of the newspaper Il Sole 24 Ore since 1970. She was elected president of UGIS (Italian Association of Science Journalists) in 1984. She has been a Member of the Board of EUSJA (European Union of Science Journalists’ Associations, Strasbourg), and was its president in 1987-1988 and 1998-2000. In May 2000 she was unanimously elected president emeritus. She was a member of the National Council of Italian Journalists (1992-1998). From 2002 to 2004 she was member of the working group for scientific communication of the National Committee for Biotechnology. She has also been a consultant at the Italian Ministry of Research and Technology and editor-in-chief of the publication MRST, policy of science and technology. She has co-authored many publications in the field of scientific information, including Le biotecnologie in Italia, Le piste della ricerca and Luna vent’anni dopo.

Tags: Imperia, Porto Maurizio, Hospital of the Order of St. Maurice

Duration: 8 minutes, 1 second

Date story recorded: May 2005

Date story went live: 24 January 2008