a story lives forever
Register
Sign in
Form submission failed!

Stay signed in

Recover your password?
Register
Form submission failed!

Web of Stories Ltd would like to keep you informed about our products and services.

Please untick here if you DO NOT wish us to contact you about our products and services.

I have read and accepted the Terms & Conditions.

Please note: Your email and any private information provided at registration will not be passed on to other individuals or organisations without your specific approval.

Video URL

You must be registered to use this feature. Sign in or register.

Loading the player... If you can't see this video please get the Flash Player.

NEXT STORY

The Wheeler-Dewitt equation

RELATED STORIES

The concept of a Geon
John Wheeler Scientist
Comments (0) Please sign in or register to add comments

Radiation, a pencil of radiation carries energy with it, and energy has mass, and therefore, a pencil of radiation must exert some attraction on things beside it. What about getting a pencil of radiation curved into a circle so the light goes around and round, then the attraction it exerts is concentrated as if at the center. So what is it that bends this pencil of radiation into the circle is the gravitational attraction of the pencil of radiation itself. That was the idea of the geon. Actually, if you think of different possibilities for the size of that geon, bigger or smaller, you find that if it's very big, the energy is low, to push the radiation together requires energy. And you climb a hill like the hill of a volcano until you come to a maximum energy, and then, if the pencil of radiation becomes any smaller in size, the energy starts to go down and the thing collapses. So a geon is really an unstable entity. It either blows up into a cloud of radiation traveling away in all directions, or it collapses into a totally collapsed object, something that we today would call a Black Hole. But that stability analysis I didn't have in mind when I first published this work, only later did I see that that's a feature that's dominant. But nowadays, I'm attracted with this idea that this pencil of radiation going around in a circle does not have to be light, it can be gravitational waves. And you can have gravitational waves imploding to make a black hole.

John Wheeler, one of the world's most influential physicists, is best known for coining the term 'black holes', for his seminal contributions to the theories of quantum gravity and nuclear fission, as well as for his mind-stretching theories and writings on time, space and gravity.

Listeners: Ken Ford

Ken Ford took his Ph.D. at Princeton in 1953 and worked with Wheeler on a number of research projects, including research for the Hydrogen bomb. He was Professor of Physics at the University of California and Director of the American Institute of Physicists. He collaborated with John Wheeler in the writing of Wheeler's autobiography, 'Geons, Black Holes and Quantum Foam: A Life in Physics' (1998).

Duration: 2 minutes, 32 seconds

Date story recorded: December 1996

Date story went live: 24 January 2008