a story lives forever
Sign in
Form submission failed!

Stay signed in

Recover your password?
Form submission failed!

Web of Stories Ltd would like to keep you informed about our products and services.

Please tick here if you would like us to keep you informed about our products and services.

I have read and accepted the Terms & Conditions.

Please note: Your email and any private information provided at registration will not be passed on to other individuals or organisations without your specific approval.

Video URL

You must be registered to use this feature. Sign in or register.


Examining intermediate coupling inside the nucleus


The shell model and J-coupling
Murray Gell-Mann Scientist
Comments (0) Please sign in or register to add comments

Viki [Victor Weisskopf] assigned me a nuclear physics problem, which arose in the following way. Another thing that people learned just at that time was the correctness of the shell model with J-coupling, and that happened just, well, when I arrived at MIT for graduate school. Now, the shell model was based on very weak coupling ideas, independent particles in fact, whereas - especially in heavy nuclei - the prevailing idea was that there was very strong coupling. And [Niels] Bohr's notion prevailed that a neutron coming into a heavy nucleus sort of got lost in there for a long time, didn't come out for a long time because of strong coupling.

New York-born physicist Murray Gell-Mann (1929-2019) was known for his creation of the eightfold way, an ordering system for subatomic particles, comparable to the periodic table. His discovery of the omega-minus particle filled a gap in the system, brought the theory wide acceptance and led to Gell-Mann's winning the Nobel Prize in Physics in 1969.

Listeners: Geoffrey West

Geoffrey West is a Staff Member, Fellow, and Program Manager for High Energy Physics at Los Alamos National Laboratory. He is also a member of The Santa Fe Institute. He is a native of England and was educated at Cambridge University (B.A. 1961). He received his Ph.D. from Stanford University in 1966 followed by post-doctoral appointments at Cornell and Harvard Universities. He returned to Stanford as a faculty member in 1970. He left to build and lead the Theoretical High Energy Physics Group at Los Alamos. He has numerous scientific publications including the editing of three books. His primary interest has been in fundamental questions in Physics, especially those concerning the elementary particles and their interactions. His long-term fascination in general scaling phenomena grew out of his work on scaling in quantum chromodynamics and the unification of all forces of nature. In 1996 this evolved into the highly productive collaboration with James Brown and Brian Enquist on the origin of allometric scaling laws in biology and the development of realistic quantitative models that analyse the influence of size on the structural and functional design of organisms.

Tags: MIT, Victor Weisskopf, Niels Bohr

Duration: 48 seconds

Date story recorded: October 1997

Date story went live: 24 January 2008